The Chlamydomonas reinhardtii organellar genomes respond transcriptionally and post-transcriptionally to abiotic stimuli.
نویسندگان
چکیده
The Chlamydomonas reinhardtii plastid and mitochondrial transcriptomes were surveyed for changes in RNA profiles resulting from growth in 12 culture conditions representing 8 abiotic stimuli. Organellar RNA abundance exhibited marked changes during nutrient stress and exposure to UV light, as revealed by both RNA gel blot and DNA microarray analyses. Of particular note were large increases in tufA and clpP transcript abundance during nutrient limitation. Phosphate and sulfur limitation resulted in the most global, yet opposite, effects on organellar RNA abundance, changes that were dissected further using run-on transcription assays. Removal of sulfate from the culture medium, which is known to reduce photosynthesis, resulted in 2-fold to 10-fold decreases in transcription rates, which were reflected in lower RNA abundance. The decrease in transcriptional activity was completely reversible and recovered to twice the control level after sulfate replenishment. Conversely, phosphate limitation resulted in a twofold to threefold increase in RNA abundance that was found to be a post-transcriptional effect, because it could be accounted for by increased RNA stability. This finding is consistent with the known metabolic slowdown under phosphate stress. Additionally, inhibitor studies suggested that unlike those in higher plants, Chlamydomonas chloroplasts lack a nucleus-encoded plastid RNA polymerase. The apparently single type of polymerase could contribute to the rapid and genome-wide transcriptional responses observed within the chloroplast.
منابع مشابه
Deep Transcriptome Sequencing of Two Green Algae, Chara vulgaris and Chlamydomonas reinhardtii, Provides No Evidence of Organellar RNA Editing
Nearly all land plants post-transcriptionally modify specific nucleotides within RNAs, a process known as RNA editing. This adaptation allows the correction of deleterious mutations within the asexually reproducing and presumably non-recombinant chloroplast and mitochondrial genomes. There are no reports of RNA editing in any of the green algae so this phenomenon is presumed to have originated ...
متن کاملPolycytidylation of mitochondrial mRNAs in Chlamydomonas reinhardtii
The unicellular photosynthetic organism, Chlamydomonas reinhardtii, represents a powerful model to study mitochondrial gene expression. Here, we show that the 5'- and 3'-extremities of the eight Chlamydomonas mitochondrial mRNAs present two unusual characteristics. First, all mRNAs start primarily at the AUG initiation codon of the coding sequence which is often marked by a cluster of small RNA...
متن کاملInvestigation of an Optimized Context for the Expression of GFP as a Reporter Gene in Chlamydomonas Reinhardtii
Background: Chlamydomonas reinhardtii is a novel recombinant eukaryotic expression system with many advantages including fast growth rate, rapid scalability, absence of human pathogens and the ability to fold and assemble complex proteins accurately, however, obstacle relatively low expression level necessitates optimizing foreign gene expression in this system. The Green Fluorescent Protein (G...
متن کاملBiosynthesis of Silver Nanoparticles Using Chlamydomonas reinhardtii and its Inhibitory Effect on Growth and Virulence of Listeria monocytogenes
Background: Biosynthesis of nanoparticles using microorganisms, enzymes, and plant extracts is regarded as an alternative to chemical methods. Microalgae appear to be an efficient biological platform for nanoparticle synthesis as they grow rapidly and produce large biomass at lower cost. Objectives: The possibility of silver nanoparticles biosynthesisby freshwater green microalgae, Chlamydomona...
متن کاملOrigin of the polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas.
Polycomb group proteins play an essential role in the maintenance of cell identity and the regulation of development in both animals and plants. The Polycomb Repressive Complex 2 (PRC2) is involved in the establishment of transcriptionally silent chromatin states, in part through its ability to methylate lysine 27 of histone H3 by the Enhancer of zeste [E(z)] subunit. The absence of PRC2 in uni...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 14 11 شماره
صفحات -
تاریخ انتشار 2002